Boosting Multiclass Learning with Repeating Codes

نویسندگان

  • Yu-Shi Lin
  • Chun-Nan Hsu
چکیده

A long-standing goal of machine learning is to build a system which can detect a large number of classes with accuracy and efficiency. Some relationships between classes would become a scale-free network in which we can classify the assigned class very fast. Many available methods for multiclass problems have been proposed in the literatures, such as AdaBoost.ECC [4], AdaBoost.ERP, [7] and JointBoost [12]. However, many of them are inaccurate or time-consuming on training. In this paper, we propose a new algorithm, called AdaBoost.ERC, which combines the approach of Dietterich and Bakiri [2] based on error correcting output codes (ECOC) and Shapire’s boosting algorithm [3] [10]. With advantages of both concepts, our new approach achieves better performance compared to AdaBoost.ECC, AdaBoost.ERP, and JointBoost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using output codes to boost multiclass learning problems

This paper describes a new technique for solving multiclass learning problems by combining Freund and Schapire’s boosting algorithm with the main ideas of Dietterich and Bakiri’s method of error-correcting output codes (ECOC). Boosting is a general method of improving the accuracy of a given base or “weak” learning algorithm. ECOC is a robust method of solving multiclass learning problems by re...

متن کامل

Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization

MOTIVATION Determining locations of protein expression is essential to understand protein function. Advances in green fluorescence protein (GFP) fusion proteins and automated fluorescence microscopy allow for rapid acquisition of large collections of protein localization images. Recognition of these cell images requires an automated image analysis system. Approaches taken by previous work conce...

متن کامل

Multiclass Semi-supervised Boosting Using Different Distance Metrics

The goal of this thesis project is to build an effective multiclass classifier which can be trained with a small amount of labeled data and a large pool of unlabeled data by applying semi-supervised learning in a boosting framework. Boosting refers to a general method of producing a very accurate classifier by combining rough and moderately inaccurate classifiers. It has attracted a significant...

متن کامل

Online multiclass boosting

Recent work has extended the theoretical analysis of boosting algorithms to multiclass problems and to online settings. However, the multiclass extension is in the batch setting and the online extensions only consider binary classification. We fill this gap in the literature by defining, and justifying, a weak learning condition for online multiclass boosting. This condition leads to an optimal...

متن کامل

Totally Corrective Multiclass Boosting with Binary Weak Learners

In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms’ Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006